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Abstract
We discuss the behaviour of a four-probe ballistic cross nanojunction patterned
in a two-dimensional electron gas (2DEG) by taking into account the spin–orbit
(SO) coupling due to the in-plane electric field.

We propose a new scheme of spin filtering based on this SO interaction in
the regime of the so-called quenching of the spin Hall effect by discussing the
geometrical effects on the transport with a semiclassical approach. We show
that a pure spin current is induced in the transverse probes when an unpolarized
charge current is injected through their longitudinal leads. We relate the spin
conductance in the transverse probes to the charge conductance through the
longitudinal leads.

We also demonstrate that the flow of a longitudinal unpolarized current
through the junction will induce a spin accumulation which has opposite signs
for the two lateral probes.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In recent years the increasing interest in spin-based information processing, and the related
phenomenon known as spin Hall effect, fomented the field of semiconductor spintronics [1, 2].
Several fundamental quantum phenomena which involve electron spin have been investigated in
order to generate and measure pure spin currents, i.e., those not accompanied by any net charge
current. Among these studies many are focused on the role of the spin–orbit (SO) coupling in
condensed matter systems in order to obtain a pure spin Hall current.

The Hall effect is a typical phenomenon concerning electric conduction [3]. A current
flowing in a thin conductor in the presence of a magnetic field experiences a Lorentz force
depending on the electric charge. This produces the splitting of the current: negative charges
and positive ones flow in mutually opposite directions. Thus the inhomogeneous charge

0953-8984/07/395019+14$30.00 © 2007 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/0953-8984/19/39/395019
http://stacks.iop.org/JPhysCM/19/395019


J. Phys.: Condens. Matter 19 (2007) 395019 S Bellucci et al

distribution generates a potential difference: the Hall effect refers to the potential difference
(Hall voltage) on opposite sides of a thin sheet of conducting or semiconducting material in the
form of a ‘Hall bar’ through which an electric current is flowing, created by a magnetic field
applied perpendicularly to the Hall element.

A similar effect subsists for the spin current in a conductor, and it is called the spin Hall
effect (SHE) [4]. There are two kinds of SHE: extrinsic [4] and intrinsic [5–7]; the former is
due to the scattering with impurities in the lattice of the conductor, and the latter is due to the
electric field that produces an effect on the spin currents similar to that of the Hall effect on
charge currents.

The spin–orbit coupling (SOC) plays a central role for understanding the SHE. The devices
which we consider are low-dimensional electron systems created by quasi-one-dimensional
(Q1D) devices patterned in a two-dimensional electron gas (2DEG). The confinement of the
electrons is obtained by external potentials which generate different SOC [8], such as the
Rashba SOC (the α-SOC term due to the quantum-well potential [9] that confines electrons to
a 2D layer) and the confining SOC (the β-SOC term arising from the in-plane electric potential
that is applied in order to squeeze the 2DEG into a Q1D channel [9, 10]).

In α-SOC we have an electric field orthogonal to the motion plane. A useful way to
describe the effect of this field is to use an effective magnetic field coplanar to the motion plane
and orthogonal to the electrons velocity. The form of α-SOC in the Hamiltonian is [8, 11, 12]

Ĥ α
SO = eλ2

h̄

(
σx py − σy px

)
. (1)

The typical expression of the β-SOC, generated by an electric field applied in the same plane
of a current flowing through the 2DEG, is given by [13–17]

Ĥ β

SO = λ2

h̄
σ̂z

[∇V (x) ∧ p̂
]
. (2)

A useful way to describe the effect of the confining SOC is to represent it in terms of an effective
magnetic field perpendicular to the motion plane.

Here we discuss the presence of the SHE in nanojunctions formed by crossing Q1D devices
in the ballistic regime. This regime is realized when the flow of electrons in a device is
not perturbed by impurities of the lattice, or when the dimension of the device is very large
compared to the electrons’ mean free path. When these conditions are satisfied, one of the
consequences is that we can relate the conductance to the quantum mechanical transmission
coefficients, Tn,m . One of the fundamental tools of this argument is the Büttiker–Landauer
formula [18]. This formula yields the conductance of a system at T = 0 K in terms of the Tn,m ,

G = 2
e2

h

∑

m,n

Tm,n . (3)

For a multiprobe device the Landauer formula was extended by Büttiker, starting from the
formula

Ip =
∑

q

(
GqpVp − GqpVq

) =
∑

q

G pq
(
Vp − Vq

)
, (4)

which relates charge currents in every single probe to the potential in all other probes by the
conductance G pq . Treating the spin currents in the same way, it is possible to obtain the
following relation for the spin currents [19]:

I s
p = h̄

2e

∑

q

(
Gs

pq Vp − Gs
qpVq

)
. (5)
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Figure 1. The mesoscopic junction (top), and 3D plots of the potential Vc(x, y) which describes
the nanojunction (bottom). The numbers indicate the index of the leads.

The presence of the SHE can be argued by the presence of a spin current or a spin
accumulation. In [20], the authors demonstrated that the flow of a longitudinal unpolarized
current through a ballistic 2DEG with α-SOC will induce a nonequilibrium spin accumulation
which has opposite signs for the two lateral edges. The discussion was extended with the
investigation of the SHE in multiprobe ballistic SO-coupled semiconductor bridges, [19] i.e.,
a device in which longitudinal leads are attached to a ballistic quantum-coherent 2DEG in
semiconductor heterostructures [19, 20]. The latter devices can be assumed as a crossing
junction between two Q1D wires4, such as the one shown in figure 1. Thus the flow of a
longitudinal (1 → 3) unpolarized current through a ballistic X junction with α-SOC will induce
a spin accumulation which has opposite signs for the two lateral probes (2 and 4) and could be
the main observable signature of the SHE in this device [19, 20]. However, in Q1D devices the
effects of the β-SOC can also be relevant [14–17] by giving a localization of the spin currents
in a Q1D wire [13]. It follows that the value of the spin accumulation predicted for the β-SOC
in nanometric cross junctions could be of the same order of magnitude, or larger, than the one
predicted in [20] and due to a quite strong α-SOC.

The small strength of the effective magnetic field due to the β-SOC and the junction shape
suggest that the device works in a regime analogous to the one known as the quenching of the
Hall effect [15]. This regime corresponds to the one where, in the presence of a quite small
external magnetic field, B , a suppression of the Hall resistance or a negative Hall resistance,
RH, was measured, as shown in [21]. The quenching of the Hall effect presumably depends on
the geometry of the junction, which plays its role when the magnetic field is small. Instead, if
there is a strong magnetic field, the geometry of the junction is less important. This aspect is

4 The width W of each Q1D corresponding to the device proposed in [20] ranges from ∼25 nm to 100 nm.
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very simple to understand: the geometry of the junction is represented in the Hamiltonian as
an electric potential; when the magnetic field is smaller than the junction potential the former
is more important in the description of our model. Instead, the opposite happens when we deal
with strong magnetic fields.

In this paper we discuss the spin polarization of the current in the presence of β-SOC in
X-shaped [15] four-probe (figure 1) nanometric cross junctions. We focus on single-channel
transport and investigate with a numerical semiclassical approach the spin accumulation in the
transverse leads and the correlated spin and charge conductance.

Section 2 is devoted to the description of the junction, to the corresponding confining
potential and to a short introduction to the quenching of the Hall effect in cross junctions. In
section 3 we introduce the theoretical model, we calculate the spin and charge conductance
based on the Büttiker–Landauer formalism and we present our method to perform the
computation of the conductances by a semiclassical construction. In section 4 we discuss our
results by focusing on the spin Hall currents which flow through a four-probe cross junction and
then we proceed to the analysis of spin accumulation along the leads. In section 5 we present
our conclusions by also giving some details about the feasibility of the discussed device.

2. Q1D cross junctions and quenching of the Hall effect

Quantum wires (QWs or nanowires) are the fundamental element in the construction of the
devices that we analyse here. A QW is usually defined as an electrically conducting wire having
a width, W , smaller than 1000 Å [22] and a length, L, up to some microns (here we think of a
QW where W ∼ 5–100 nm) in which quantum effects affect the transport properties. As such,
they are often referred to as 1D materials. Nanowires have many interesting properties that are
not seen in bulk or 3D materials. This is because electrons in nanowires are quantum confined
laterally and thus occupy energy levels that are different from the traditional continuum of
energy levels or bands found in bulk materials. Peculiar features of this quantum confinement
exhibited by certain QWs manifest themselves in discrete values of the electrical conductance.
Such discrete values arise from a quantum mechanical restraint on the number of electrons that
can travel through the wire at the nanometre scale. These discrete values are often referred to
as the quantum of conductance, and they are given by integer values of 2e2

h . The conductivity
of a nanowire is expected to be much smaller than that of the corresponding bulk material.

In line with [23], from a theoretical point of view, the lateral confining potential of a QW
is usually defined by a parabolic confining potential along the transverse direction, x̂ , with
strength ωd :

Vc(x) = m

2
ω2

d x2.

It will be useful for further development to introduce the length

l2
ω = h̄

mωd
(6)

corresponding to the effective width of the QW.
A four-probe cross junction is formed by two perpendicularly crossing QWs (see figure 1).

In this device the electric potential that confines electrons inside the wires is not exactly known.
In our model the confining action is wielded by a confining potential V (x). The simplest

way is to use a potential that will be parabolic along the shape we want for the junction in
figure 1 (top). Adding to this the information that the potential plausibly has a minimum in the
centre of the junction we can realize that a good model for the potential (see figure 1 (bottom)) is

VX (x) = mω2
d R2

2

x2y2

(R2 + x2)(R2 + y2)
, (7)

4
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Figure 2. Top: calculated RH versus B for two different values of the Fermi energy (experimentally
corresponding to the gate voltage, Vg). Here B corresponds to h̄ωc = h̄eB/(m∗c) in units of
h̄ωd . At small B it is clear that a quenched region is present, where the Hall resistance, RH, is
negative. Bottom: measured RH versus B for the device in [21]; the crossing wires have a real
width WR ∼ 200 nm and an effective one W � 60 nm. It follows that h̄ωd ∼ 6 meV, while the
range of B (±0.75h̄ωd ) corresponds to a B value which ranges between −1 and 1 T (see [12]). This
allows for a comparison with the results shown in figure 1 of [21].

where lω can be related to the width, W , of the QWs, while R is related with the radius of the
crossing zone.

As we mentioned above, the strength of the effective magnetic field due to the SOC is quite
small. Thus we want to analyse a device, such as the nanojunction, where relevant effects on
the transport properties also appear at small values of a real or effective magnetic field.

The transport through micrometric ballistic junctions (i.e., a cross junction between two
narrow QWs in a 2DEG, also known as a four-probe junction) was largely investigated about
20 years ago. Several magneto-transport anomalies were found in these devices, among these
the quenched or negative Hall resistance, bend resistances and a feature known as the last Hall
plateau.

The quenching of the Hall effect is an attenuation of the Hall resistance which is observable
when a low-intensity (typical values for the quenching in the device of [21] are B � 0.2 T)
magnetic field is present. This attenuation is accentuated near the origin, as shown in figure 2
(bottom). One of the goals of our computational model is to take into account the quenching

5
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within a good approximation. If we consider an idealized junction with sharp edges, the Hall
effect manifests itself in a monotonic way, also when there is a low-intensity magnetic field.
However, in order to describe the device we are studying correctly, we need to predict the so-
called quenching of the Hall effect. This phenomenon is essentially due to the rounded corners
present in every (real) device. The rounded edges contribute to the overall field, and manifest
their presence by a negative electrical resistance.

The results of our simulations can be compared with the experimental data reported in [21]
and turn out to support the validity of our approach.

3. Theoretical model and computational approach

3.1. Model and effective magnetic field

The overall Hamiltonian reads

H = p2

2m
+ V (x) + H β

SO (8)

where

H β

SO = λ2

h̄
σz

[
∇V (x) ∧

(
p + e

c
A

)]

z
(9)

is the term of the Hamiltonian for β-SOC with λ = h̄
(2mc) . In our case we have just the third

component of the coupling because the motion orthogonal to the plane of the 2DEG is quantum
mechanically frozen and we assume that there are no external magnetic fields, so A = 0.
It is important to observe that the third spin component is conserved, since the Hamiltonian
commutes with it.

The Hamiltonian of an electron of a 2DEG moving in our device is then

H = p2

2m
+ λ2

h̄
e (E(x) ∧ p)z σz + V (x) = π2

2m
+ V (x) − me2 λ4

2h̄2
|E(x)|2 ,

where πi = (pi − εi j z
λ2

h̄ m∗eE jσz) and E(x) = ∇V (x). The commutation relation
[
πx, πy

] = −ih̄
e

c
Beff(x)σz (10)

is the same as for a charged particle in a magnetic field, except that the sign of Beff depends on
the spin direction along z.

In the special case of a QW, e∇Vc(r) ≡ mω2
d(x, y, 0). Hence the effective magnetic field

reads

Beff = λ2

h̄

m2ω2
d c

e
≡ β

h̄lω

mc

e
, (11)

where β ≡ λ2m∗ω2
dlω. Thus Beff is orthogonal to the 2DEG directed upward or downward,

according to the spin polarization along the z direction.
Introducing the effective cyclotron frequency ωc = β

h̄lω
(ωc/ωd = λ2/ l2

ω), the constant

ω̃2
d = ω2

d − ω2
c and the total frequency ωT =

√
ω̃2

d + ω2
c , equation (8) reads

H = ω̃2
d

ω2
T

p2
y

2me
+ p2

x

2me
+ mω2

T

2
(x − X0)

2, (12)

where X0 = s ωc py

ω2
T me

and s = ±1 corresponds to the spin polarization along the z direction.

Notice the analogy with the Hamiltonian corresponding to one electron in the QW when an
external transverse magnetic field is present.

6
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3.2. Spin Hall conductance and Büttiker formalism

The mesoscopic experiments on quantum Hall cross junctions challenge of the theoretical
interpretation of multiterminal transport measurements. As we discussed above, Büttiker [18]
provided an elegant solution to this problem in the form of a multiprobe formula [18] in
equation (5), which relates, via the conductance coefficients G pq , the charge current Ip =
I ↑

p + I ↓
p in probe p to the voltages Vq in all other probes attached to the sample.

In order to study the spin-resolved charge currents I σ
p (σ = ↑,↓) we replace Ip → I σ

p

and G pq → Gσσ ′
pq . This viewpoint allows us to extract the multiprobe formulae for the spin-

resolved charge currents [24, 25] I σ
p , while the spin current flowing through probe p can be

defined as

I s
p = h̄

2e
(I ↑

p − I ↓
p ) = h̄

2e

∑

q

[Gout
qp Vp − G in

pq Vq], (13)

where G in
pq = G↑↑

pq + G↑↓
pq − G↓↑

pq − G↓↓
pq and Gout

pq = G↑↑
pq + G↓↑

pq − G↑↓
pq − G↓↓

pq .

Taking into account the spin conservation of our Hamiltonian we note that G↑↓
pq = G↓↑

pq = 0. At
zero temperature, the spin-resolved conductance coefficients read Gσσ ′

pq = e2

h

∑
i j |tpq

i j,σσ ′ |2 =
e2

h T σσ ′
pq , where summation (i, j) is over the conducting channels in the leads (in the following

we limit ourselves to just one channel).Thus the G coefficients are obtained, according to the
Landauer formula, as the probability for a spin-σ ′ electron incident in probe q to be transmitted
to probe p as a spin-σ electron, T σσ ′

pq .
In order to test our approach by a comparison with the experiments, we first analyse the

regime corresponding to the quenching of the Hall effect and we neglect the spin effects. Thus,
by applying the Büttiker formalism [18] in a four-fold symmetric junction, such as the one
shown in figure 1, we are able to compute the Hall resistances, RH, as a function of the Tpq [26]:

RH = R0
T21 − T41

T 2
21 + T 2

41 + 2T31(T21 + T31 + T41)
, (14)

with R0 ∝ h/e2.
Now we want to discuss the spin-dependent case in the presence of β-SOC. The

commutation relation [H, σz] in this system implies

T ↑↓
pq = T ↓↑

pq = 0 ⇒ G↑↓
pq = G↓↑

pq = 0,

so that G in
pq = G↑↑

pq − G↓↓
pq and Gout

qp = G↑↑
qp − G↓↓

qp .
Since the total charge current Ip depends only on the voltage difference between the probes

in figure 1, we set one of them to zero (e.g., V3 = 0 is chosen as the reference potential) and
apply the voltage V1 to the system. Imposing the requirement I2 = I4 = 0 for the voltage
probes 2 and 4 we can specify the V2/V1 = V4/V1 ≡ 1/2 [19]. Thus, following [19], we can
obtain the spin Hall conductance as

GsH = h̄

2e

I ↑
2 − I ↓

2

V1 − V3

= h̄

2e

[
(Gout

12 + Gout
32 + Gout

42 )
V2

V1
− G in

42

V4

V1
− G in

21

]
. (15)

This quantity is measured in units of the spin conductance quantum e/4π . Analogously we are
able to compute the corresponding longitudinal charge conductance

GL = e2

h

I3

V1
= h̄

2e

[
G31 + G32

V2

V1
+ G34

V4

V1

]
. (16)

7
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The symmetry of the device is reflected by the transmission coefficients, so that T s,s
12 =

T s,s
23 = T s,s

34 = T s,s
41 , T s,s

14 = T s,s
43 = T s,s

32 = T s,s
21 and T s,s

13 = T s,s
31 . The antisymmetric behaviour

due to the inversion of Beff according the spin polarization gives T ↑↑
12 = T ↓↓

14 and T ↑↑
14 = T ↓↓

12 .
Hence, it follows that

Gz
sH = e

4π
2
(

T ↑↑
12 − T ↑↑

14

)
, (17)

while the corresponding longitudinal charge conductance turns out to read

GL = e2

h

(

T ↑↑
13 + T ↑↑

12 + T ↑↑
14

2

)

. (18)

It is now clear that the non-vanishing GsH stems from the symmetry breaking between probes
2 and 4 due to the effective magnetic field.

3.3. Computational approach

The calculation of the transmission amplitude is based on the simulation of classical trajectories
of a large number of electrons with different initial conditions. We want to determine the
probability T s,s ′

1 j of an electron with spin s to be transmitted to lead j when it is injected in
lead 1. This coefficient can be determined from classical dynamics of electrons injected at
y0 = −7.5lω (emitter position) with an injection probability following a spatial distribution
p0(x0, y0) ∝ e−x2

0 /l2
ω as in [26]. The total energy ε of a single electron (in probe 1) is composed

by the free electron energy ε0
y for motion along y and the energy of the transverse mode

considered ε0
x due to the parabolic confinement (εx = h̄ωd/2 for the lowest channel).

Thus, we have calculated T s
i j determined by numerical simulations of the classical

trajectories injected into the junction potential Vc with boundary conditions [15] r(0) ≡
(x0, y0); v(0) ≡ v0, each one with a weight p0(x0). In general, these transmission amplitudes
can depend on the position of the collectors along the probes.

Before the discussion about our results concerning the SHE we want to point out that
a comparison with theoretical and experimental results allows us to test our approach. In
fact, above we discussed the effects on the X-junction transport due to a quite small external
magnetic field, Bext, by focusing on the so-called quenched region. The measured ‘quenching
of the Hall effect’ [21] is a suppression of the Hall resistance or ‘a negative Hall resistance’
RH for small values of Bext. The results reported in figure 2 (top), obtained by using our
approach, show a good agreement with the experimental data figure 2 (bottom) by confirming
the reliability of our approach, as can be understood by comparing top and bottom panels of
figure 2. This behaviour can be explained in terms of the broken symmetry of the trajectories
reported in figure 3. In the case of the SHE, the effective magnetic field is of a small intensity
and not homogeneous. It is constant in the leads that constitute the junction and position
dependent in the central zone of junction. It depends also on the spin and is directed upward
or downward, according to the spin polarization along the z direction. It is very important
to observe that all these properties, together with the low intensity of the effective field,
characterize a transport regime which, in analogy with the known regime of the Hall effect,
is called the quenching regime of the SHE [15].

4. Results

Applying the Büttiker–Landauer formula to the cross junction after the calculation of the
transmission coefficients, we are able to compute some measurable quantities. The key issue

8
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Figure 3. Simulated trajectories of electrons inside the junction for a Fermi energy εF

corresponding to εy = 0, 6h̄ωd and different values of the magnetic field. For every box there are
two trajectories corresponding to different boundary conditions: positive vx (0) (continuous lines)
and negative vx (0) (dashed lines). All trajectories start from the bottom (1) probe. For a vanishing
magnetic field the trajectories are perfectly symmetric, but when the field grows the symmetry is
broken. At weak fields (ωc ∼ 0.05ωd ) just one electron is found in probe 2 and quenching occurs.
When the field grows further (ωc ∼ 0.5ωd ), both electrons are found in probe 4; thus, we are in
the normal QHE regime. Looking at figure 2 we can understand the way the quenching and the
normal QHE are realized at the microscopic level: i.e. by a symmetry-breaking mechanism that is
macroscopically measured as a negative resistance.

for spintronics applications is to detect (at least indirectly [27]) a pure spin Hall current flowing
out of multiterminal structures.

In figure 4 we show the spin Hall conductance Gz
sH = Gs

24 (corresponding to the detection
of the z component of the pure spin current I s

2 ) for the crossing nanojunction as a function of the
Fermi energy εF (right panels). The left panels also show the longitudinal charge conductance
GL of our four-terminal device depicted in figure 1. We have chosen significantly different
values of the effective magnetic field (ωc between 10−4 and 10−1ωd ). The plots are obtained
by our computational model, varying the Fermi energy and calculating the trajectories inside
the junction.

When the effective magnetic field is large (ωc ∼ 10−1ωd , top panels of figure 4) by a
comparison we point out the correspondence between the peaks in the charge conductance and
those in the spin conductance. This could be very important from the experimental point of view
since it should be not so difficult to recognize a peak in the longitudinal charge conductance.
When we are in these circumstances we are sure to be in a condition to have a maximum of the
spin conductance.

When the ratio ωc/ωd decreases (bottom panels of figure 4) we are in the typical regime
of quenching, and several oscillations are predicted in the spin Hall conductance. It is not
possible in this case to carry out a correspondence with the behaviour of the longitudinal charge
conductance.

In the above, we discussed the observed Hall conductance (figure 2) and explained it in
terms of the broken symmetry of the trajectories due to the presence of an external magnetic
field (figure 3). The charge and spin conductance in figure 4 can be explained on the same
grounds. Here the symmetry of the trajectories of spin up/spin down electrons is broken, as we
show in figure 5.

Now we introduce a dimensionless quantity Pz to describe the polarization along the Sz

spin axis of the current transmitted through the transverse probes of the junction, which is
defined by

Pz = I ↑
2 − I ↓

2

I ↑
2 + I ↓

2

= T ↑↑
12 − T ↓↓

12

T ↑↑
12 + T ↓↓

12

.

9
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Figure 4. These diagrams show the spin and the charge conductance as a function of the Fermi
energy. Top: for strong effective fields (ωc ∼ 10−1ωd ) we underline that, when there are peaks
for the charge conductance, we observe peaks for the spin conductance in the orthogonal direction.
This circumstance is useful for the experimental measurability of the spin Hall current. Bottom: for
weak effective fields (ωc � 10−3ωd ) it is not possible to establish a correspondence of GsH with
the behaviour of the G L and several oscillations are predicted. However, note that oscillations are
not much suppressed by the reduction of the effective field.

Here Pz is similar to the spin injection rate defined in ferromagnetic/semiconductor/ferromagn-
etic heterostructures [28], and it can be measured experimentally. The values of Pz are plotted in
figure 6 as a function of the Fermi energy for two different strengths of the effective field. Note
that a significant spin polarization in the transverse current is present also for weak effective
magnetic fields.

In order to make the presence of a spin current observable, it can be useful to analyse the
spin accumulation, i.e., the transverse profile of the out-of-plane 〈Sz(r)〉 component of the spin.
As discussed in [20] the spin accumulation develops two peaks of opposite signs at the lateral
edges of a 2DEG and, upon reversing the bias voltage, the edge peaks flip their sign. The
behaviour outlined here, for the phase-coherent transport regime at low temperatures, is similar
to the general phenomenology of the SHE which has been demonstrated convincingly, in some
recent experiments [29], which focus on the optical detection of the spin Hall accumulation of
opposite signs on the lateral edges of two-probe semiconductor structures.

The one-dimensional spatial transverse profile of 〈Sz(r)〉 across the lateral probes of the
junction is plotted in figure 7 for the ballistic regime in the presence of β-SOC. The value

10
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Figure 5. Simulated trajectories of electrons inside the junction with εF around the maximum and
respectively the minimum of the calculated values for spin accumulation. The strength of SOC
depends on the position in the junction. There are two trajectories plotted for a positive velocity
vx (0). The trajectories start from the bottom. It is interesting to note that the symmetry of the
trajectories is broken when we are near the peaks of spin accumulation.

Figure 6. The spin polarization of the transverse current as a function of the Fermi energy, for two
values of the effective field: (top) ωc = 10−1ωd , (bottom) ωc = 10−3ωd .

of 〈Sz(x)〉 which we found in the transverse probes (2, 4) is of order 10−1 − 10−2h̄/2 for
significative values of the effective magnetic field, as we show in figure 7.
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Figure 7. We have plotted the values of the one-dimensional transverse spatial profile of the spin
accumulation 〈Sz(x)〉 in units of h̄/2 across the transverse probes (2 and 4) for three values of the
effective field: ωc = 10−1ωd , ωc = 10−3ωd , ωc = 10−4ωd . It is possible to deduce the presence
of quenching of the spin Hall effect by negative spin accumulation. The x coordinate indicates the
position of the detector along the probe of the junction. We only used values from 2 lω to 14 lω .

As it turns out that 〈Sz(x, 0)〉 = 〈Sz(−x, 0)〉, the transverse profile of the out-of-plane
Sz(r) component of the spin accumulation in the X-shaped junction develops two peaks of
opposite signs in the lateral probes of the junction (2 and 4 in figure 1) when an unpolarized
spin current is injected in the lead 1. Upon reversing the bias voltage (V13), the edge peaks flip
their sign 〈Sz(r)〉V = −〈Sz(r)〉−V .

When transverse leads (2 and 4) are attached to the lateral edges of the 2DEG as in [20],
the nonequilibrium spin accumulation pushes the pure spin current

IsH = h̄

2e
(I ↑

2 − I ↓
2 )

into the transverse probes.

5. Conclusions

The four-probe junction discussed in this paper appears to be like a kind of ultra-sensitive scale,
capable of reacting to the smallest variations of the magnetic field. In this case, any breakdown
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of the symmetry (due to an external magnetic field) produces a Hall current. The effect should
be observable even for what concerns the SO effect, especially for the so-called β coupling. In
this case we found that a non-vanishing spin Hall conductance can be measured. As we showed
in figure 4, the peaks in the pure spin Hall current, ISH, are present near the measurable peaks
in the longitudinal charge conductance for ωc ∼ 10−1ωd , while the correlation between GL

and GsH disappears in the quenching regime. All of our calculations are limited to the lowest
subband but can be easily extended to the several-subband case.

This spin accumulation, corresponding to a transverse pure spin current flowing in the
junction, can be a fundamental, observable signature of the spin Hall effect in four-probe
devices such as the one analysed here. The value of the spin accumulation predicted in this
paper for the β-SOC is some orders of magnitude larger than that predicted in [20] and due to
a quite strong α-SOC. There it was found that 〈Sz(x)〉 � 10−3, i.e. two orders of magnitude
smaller than the values found by us. Thus we can conclude that in narrow ballistic junctions
the β-SOC could be quite relevant in order to obtain an efficient spin filtering.

The experimental feasibility of the nanojunction presented above obviously depends on
its size and the materials. The fundamental parameter in our discussion is given by the ratio
ωc/ωd , corresponding to λ2/ l2

ω, i.e., the ratio between a material-dependent parameter λ and a
size-dependent one lω (that can be assumed to be a fraction of the real width, W , of the probes).

The SO strengths have been evaluated for some semiconductor compounds such as QWs
(W ∼ 100) patterned in InGaAs/InP heterostructures, where λ2 takes values between 0.5 and
1.5 nm2 (h̄ωc ∼ 10−6–10−4 eV ↔ ωc/ωd ∼ 10−4–10−3). For GaAs heterostructures, λ2

is one order of magnitude smaller (∼ 4.4 Å
2
) than in InGaAs/InP, whereas for HgTe-based

heterostructures it can be more than three times larger [30].
Since the lithographical width of a wire defined in a 2DEG can be as small as 20 nm [31]

we can realistically assume that ωc/ωd runs from 1 × 10−6 to 1 × 10−1.
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[18] Büttiker M 1986 Phys. Rev. Lett. 57 1761
[19] Nikolic B K, Zarbo L P and Souma S 2005 Phys. Rev. B 72 075361
[20] Nikolic B K, Souma S, Zarbo L P and Sinova J 2005 Phys. Rev. Lett. 95 046601
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